Learn R Programming

IIProductionUnknown (version 0.0.3)

IIProductionUnknown package: Analyzing data through of percentage of importance indice-production unknown and its derivations.

Description

The Percentage of Importance Indice-production unknown (Percentage_I.I.P.U.) bases in magnitudes, frequencies, and distributions of occurrence of an event. This index can detect the key loss sources (L.S) and solution sources (S.S.), classifying them according to their importance in terms of damage or damage reduction in the system. The Percentage_I.I.P.U. = ((ks1 x c1 x ds1)/SUM(ks1 x c1 x ds1) + (ks2 x c2 x ds2) + (ksn x cn x dsn)) x 100. key source (ks) is obtained using simple regression analysis and magnitude (abundance). Constancy (c) is SUM of occurrence of L.S. or S.S. on the samples (absence = 0 or presence = 1), and distribution source (ds) is obtained using chi-square test. This index has derivations: i.e., i) Reduction of the total n. of the L.S. (R.L.S.)/Total n. of the solution source and ii) Percentage of the R.L.S. per S.S..

Arguments

Author

Germano Leao Demolin-Leite (Instituto de Ciencias Agrarias da UFMG)
Alcinei Mistico Azevedo (Instituto de Ciencias Agrarias da UFMG)

References

Demolin-Leite, G. L. (2024), Percentage of importance indice-production unknown: loss and solution sources identification on system. Brazilian Journal of Biology 84, e253218. <https://doi.org/10.1590/1519-6984.253218>.

Examples

Run this code
data("DataLossSource")
ChisqTest_Distribution(DataLossSource)

data("DataSolutionSource")
ChisqTest_Distribution(DataSolutionSource)

data("DataDefoliation")
data("DataDamage")

DataResult=cbind(DataDefoliation,DataDamage$D.L.S.2,DataDefoliation,
DataDamage$D.L.S.4,DataDefoliation)
ResultLossSource=LossSource(DataLoss = DataLossSource,DataResult =DataResult,
Cols=c(1,3,5),verbose=TRUE)

EOS=EffectivenessOfSolution(DataLossSource =DataLossSource,
                            DataSolutionSource =DataSolutionSource,
                            ResultLossSource = ResultLossSource)

EOS
#Put: y and y
# ID=SelectEffectivenessOfSolution(EOS)
ID=c(FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,
FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE)
ResultSolutionSource=SolutionSource(SolutionData =DataSolutionSource,Production =DataResult,
                                    EffectivenessOfSolution =EOS ,Id = ID,Verbose = TRUE  )
ResultSolutionSource

# Put: y,n,y,n,y,n and y
# ReductionAbundance(ResultSolutionSource,ResultLossSource,
#                  EffectivenessOfSolution=EOS)

###################################################
EOSDamage=EffectivenessOfSolution(DataLossSource =DataDamage,
                                  DataSolutionSource =DataSolutionSource,
                                  ResultLossSource = NULL)


EOSDamage

# Put: y, n and y
#ReductionDamage(ResultSolutionSource,LossSource=DataDamage,
#                EffectivenessOfSolution=EOSDamage)

Run the code above in your browser using DataLab